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Why Game Research?

Games as “simulations” of real world tasks

• quantifiable goal, varying difficulty, large data sets

• digital games are fully accessible to computers
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Research Beyond Games
• see for example AlphaGo to AlphaFold

– Deep Learning + effective search schemes

– same algorithms are successful in completely different applications

AlphaZero AlphaFold
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Hearthstone – A collectible card game 

• online collectible card game

– millions of players world wide

– more than 1000 cards

• two games in one:

two players play a single game each using a self-
constructed deck of 30 cards

whole community plays a meta-game about 
deck selection/construction
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Hearthstone – Game Components and States
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Hearthstone – The next challenge for AI

• Hearthstone AI competition (started in 2018)

– More than 80 submissions by research 
teams from all over the world

• Challenges:

– partial observation

– dynamic metagame

– enormous deck space

– important card synergies

– new content every few months

[1] Dockhorn, A., & Mostaghim, S. (2019). Introducing the Hearthstone-AI Competition, 1–4. 
Retrieved from http://arxiv.org/abs/1906.04238
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Creating an AI for Hearthstone

I. Random: play an action at random
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Creating an AI for Hearthstone

I. Random: play an action at random

II. Greedy: rate each action or its 
outcome using a scoring function
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Creating an AI for Hearthstone

I. Random: play an action at random

II. Greedy: rate each action or its 
outcome using a scoring function

III. Search: optimize a sequence of 
actions instead
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Creating an AI for Hearthstone

I. Random: play an action at random

II. Greedy: rate each action or its 
outcome using a scoring function

III. Search: optimize a sequence of 
actions instead

IV. MCTS: simulate the game till the 
end and use terminal states as 
scoring function
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Creating an AI for Hearthstone

I. Random: play an action at random

II. Greedy: rate each action or its 
outcome using a scoring function

III. Search: optimize a sequence of 
actions instead

IV. MCTS: simulate the game till the 
end and use terminal states as 
scoring function

Problem: we cannot simulate beyond our own turn, since the cards of our 
opponent are unknown to us 
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InfoSet MCTS / Ensemble MCTS

• Predict Opponent‘s hand cards to simulate the opponent‘s turn

• Repeat this process and aggregate the result to get a likely estimate

[2] Dockhorn, A., Doell, C., Hewelt, M., & Kruse, R. (2017). A decision heuristic for Monte Carlo tree search doppelkopf agents. In 2017 IEEE   
Symposium Series on Computational Intelligence (SSCI) (pp. 1–8). IEEE

[3] Dockhorn, A., Frick, M., Akkaya, Ü., & Kruse, R. (2018). Predicting Opponent Moves for Improving Hearthstone AI. In J. Medina, M. Ojeda-
Aciego, J. L. Verdegay, D. A. Pelta, I. P. Cabrera, B. Bouchon-Meunier, & R. R. Yager (Eds.), 17th International Conference on Information 
Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2018 (pp. 621–632). Springer International Publishing. 
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The Metagame

• The metagame is defined by the decks players usually play.

• Clustered deck space, but some cards can appear across multiple clusters

– Question: How can we describe and find these clusters?
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The Meta-Game

Decks can be organized hierarchically

• low levels share a lot of cards

• higher levels share concepts

– called “deck archetypes“
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Decks Analysis – Multiset of Cards

• Attributes of a deck:

– contains 30 cards

– can contain the same card multiple times (except legendaries)

• Therefore, we define a deck to be a multiset of cards:
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Decks Analysis – Multiset of Cards

• Based on this we define union and intersection
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• Lets test this with a simple example:



Decks Analysis – Fuzzy Multiset of Cards

• We redefine the deck to be a fuzzy multiset of cards

– becomes a multiset of membership degrees  

– we sort and group the membership degrees according to
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Decks Analysis – Fuzzy Multiset of Cards

• Based on this we define union and intersection
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• Lets test this with a simple example:



Fuzzy Multiset Clustering

• We apply hierarchical clustering using the following distance functions

– Euclidean distance for fuzzy multisets

– Jaccard distance for fuzzy multisets
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Result of the Clustering Process

• We evaluated our clustering based on labeled player data

– Clusters match the expert descriptions to a large degree…

– … and some may indicate labeling errors.
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➢ remaining question: what makes up a deck archetype?



Decks Analysis – Modelling Player Concepts

Core cards:

• cards that should be included in a certain deck type
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Variant cards:
• optional or replacement cards

Deck archetype:
• representation of decks with a common theme
• Here, a centroid of decks in the same cluster:



Conclusion

• Fuzzy clustering matches human labelling

• Allows us to model natural language concepts

• Sampling based on the fuzzy centroid yields higher accuracy than 
probabilistic approaches

– Related agent will participate in the 2020 Hearthstone AI competition
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Next challenges:

• detect the deck archetype in play and predict the opponent’s deck

• apply stream-mining to document changes in the metagame

• automatic documentation on the effectiveness of balance changes



Thank you for your attention!

Interested in trying it yourself? Download the Code to this paper on Github
https://github.com/ADockhorn/FuzzyDeckClustering

or check out our Hearthstone AI Competition at: 
http://www.is.ovgu.de/Research/HearthstoneAI.html

by Alexander Dockhorn, Tony Schwensfeier, and Rudolf Kruse

Email: {alexander.dockhorn, tony.schwensfeier, rudolf.kruse}@ovgu.de
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